Blog Layout

Period Of Increased Vulnerability For Repeat Traumatic Brain Injury

Apr 26, 2023

Repeat traumatic brain injury affects a subgroup of the 3.5 million people who suffer head trauma each year. Even a mild repeat TBI that occurs when the brain is still recovering from an initial injury can result in poorer outcomes, especially in children and young adults. A metabolic marker that could serve as the basis for new mild TBI vulnerability guidelines is described in an article in Journal of Neurotrauma, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers.


In an Editorial, “The Window of Risk in Repeated Head Injury,” accompanying this article, John T. Povlishock, PhD, Editor-in-Chief of Journal of Neurotrauma and Professor, VCU Neuroscience Center, Medical College of Virginia, Richmond, states that recent studies of TBI in animal models have shown that while repeat injury can exacerbate structural, functional, metabolic, and behavioral responses, “these responses only occur when the injury is repeated within a specific time frame post-injury.”


“Specifically, this window of risk is greatest when the interval between injuries is short, hours to days, while any risk for increased damage is obviated when the intervals between injuries are elongated over days to weeks,” says Dr. Povlishock. It is not yet clear if these time periods of increased risk are age- or gender-specific or depend on the intensity of the initial injury.


A consistent finding following TBI in both humans and animal models is a decrease in glucose uptake by the brain. Mayumi Prins, Daya Alexander, Christopher Giza, and David Hovda, The UCLA Brain Injury Research Center, Los Angeles, CA, simulated single and repeat (after 1 or 5 days) mild TBI in rats and measured cerebral glucose metabolism. They tested the hypothesis that the rats’ brains would be more vulnerable to the damaging effects of repeat TBI at 1 day post-injury, when glucose metabolism was still decreased, than at 5 days, when it had returned to normal levels.


In the article, “Repeat Mild Traumatic Brain Injury: Mechanisms of Cerebral Vulnerability,” the authors propose that the duration of metabolic slowdown in the brain could serve as a valuable biomarker for how long a child might be at increased risk of repeat TBI.

27 Apr, 2023
Scientists from the University of Birmingham have shown that a brain-penetrating candidate drug currently in development as a cancer therapy can foster regeneration of damaged nerves after spinal trauma. The research, published today in Clinical and Translational Medicine , used cell and animal models to demonstrate that when taken orally the candidate drug, known as AZD1390, can block the response to DNA damage in nerve cells and promote regeneration of damaged nerves, so restoring sensory and motor function after spinal injury. The announcement comes weeks after the same research team showed a different investigational drug (AZD1236) can reduce damage after spinal cord injury, by blocking the inflammatory response. Both studies were supported by AstraZeneca’s Open Innovations Programme, which shares compounds, tools, technologies and expertise with the scientific community to advance drug discovery and development. Read the full article here: https://www.sciencedaily.com/releases/2022/07/220712102650.htm
27 Apr, 2023
Scientists from the University of California, Irvine have discovered that an injury to one part of the brain changes the connections between nerve cells across the entire brain. The new research was published this week in Nature Communications. Every year in the United States, nearly two million Americans sustain a traumatic brain injury (TBI). Survivors can live with lifelong physical, cognitive and emotional disabilities. Currently, there are no treatments. One of the biggest challenges for neuroscientists has been to fully understand how a TBI alters the cross-talk between different cells and brain regions. Read full article here: https://www.sciencedaily.com/releases/2022/06/220617143432.htm
27 Apr, 2023
A new study provides for the first time the surprising evidence that four common nonexcitatory amino acids that usually make proteins which are essential to brain function, instead cause irreversible, destructive swelling of both the astrocytes that support neurons and the neurons themselves in the aftermath of stroke, TBI. Read the whole story here.
27 Apr, 2023
University of Rochester researchers have been at the forefront of efforts to understand how blows to the head impact the brain, including how concussions change brain structure . Now researchers at the Del Monte Institute for Neuroscience have found that kids who experience a traumatic brain injury (TBI), even a mild one, have more emotional and behavioral problems than kids who do not. “These hits to the head are hard to study because much of it depends on recall of an injury since the impacts do not all require a visit to a doctor,” said Daniel Lopez, a Ph.D. candidate in the Epidemiology program and first author of the study out today in NeuroImage. “But being able to analyze longitudinal data from a large cohort and ask important questions like this gives us valuable information into how a TBI, even a mild one, impacts a developing brain.” Read the whole story here.
27 Apr, 2023
While the role of the blood-brain barrier has long been appreciated for its ability to maintain precise control over what molecules can enter the nervous system, very little is known about how the cells that form the barrier influence the function of the nervous system. “What we know currently about the blood-brain barrier is mostly that we don’t know much beyond the basics,” says Buck Institute professor Pejmun Haghighi, PhD, who has uncovered a new role for these cells. Read the whole article here
27 Apr, 2023
Researchers have designed a targeted therapeutic treatment that restricts brain inflammation. The effectiveness of this approach in improving outcomes was demonstrated following brain injury, stroke or multiple sclerosis in mice. The system increases the number of regulatory T cells, mediators of the immune system’s anti-inflammatory response, in the brain. By boosting the number of T regulatory cells in the brain, the researchers were able to prevent the death of brain tissue in mice following injury and the mice performed better in cognitive tests. The treatment has a high potential for use in patients with traumatic brain injury, with few alternatives currently available to prevent harmful neuroinflammation. Read the full article here
More Posts
Share by: