Blog Layout

Concussion symptoms in children may have multiple underlying causes

Apr 26, 2023

Different types of brain damage caused by a concussion may lead to similar symptoms in children, according to research led by McGill University. A new way of studying concussions could help develop future treatments.


While most children fully recover after a concussion, some will have lasting symptoms. The findings published in eLife help explain the complex relationships that exist between symptoms and the damage caused by the injury.


The researchers found that certain combinations of brain damage were associated with specific symptoms such as attention difficulties. Other symptoms, such as sleep problems, occurred in children with multiple types of injuries. For example, damage to areas of the brain that are essential for controlling sleep and wakefulness could cause challenges with sleeping, as could damage to brain regions that control mood.


The brain’s white matter holds clues


To do this, they examined how damage to the brain resulting from concussion affected its structural connection network, known as white matter. They then used statistical modelling techniques to see how these changes related to 19 different symptoms reported by the children or their caregivers.


Analysing symptoms may advance treatment


“Despite decades of research, no new treatment targets and therapies for concussions have been identified in recent years,” says lead author Guido Guberman, a Vanier Scholar and MDCM Candidate at McGill University. “This is likely because damage to the brain caused by concussions, and the symptoms that result from it, can vary widely across individuals. In our study, we wanted to explore the relationships that exist between the symptoms of concussion and the nature of the injury in more detail.”


Guberman and his colleagues analysed data collected from 306 children, aged nine to 10 years old, who had previously had a concussion. The children were all participants in the Adolescent Brain Cognitive Development (ABCD) Study.


“The methods used in our study provide a novel way of conceptualising and studying concussions,” says senior author Maxime Descoteaux, a Professor of Computer Science at Université de Sherbrooke. “Once our results are validated and better understood, they could be used to explore potential new treatment targets for individual patients. More broadly, it would be interesting to see if our methods could also be used to gather new insights on neurological diseases that likewise cause varied symptoms among patients.”


McGill University. “Concussion symptoms in children may have multiple underlying causes.” ScienceDaily. ScienceDaily, 17 May 2022. www.sciencedaily.com/releases/2022/05/220517151823.htm.

27 Apr, 2023
Scientists from the University of Birmingham have shown that a brain-penetrating candidate drug currently in development as a cancer therapy can foster regeneration of damaged nerves after spinal trauma. The research, published today in Clinical and Translational Medicine , used cell and animal models to demonstrate that when taken orally the candidate drug, known as AZD1390, can block the response to DNA damage in nerve cells and promote regeneration of damaged nerves, so restoring sensory and motor function after spinal injury. The announcement comes weeks after the same research team showed a different investigational drug (AZD1236) can reduce damage after spinal cord injury, by blocking the inflammatory response. Both studies were supported by AstraZeneca’s Open Innovations Programme, which shares compounds, tools, technologies and expertise with the scientific community to advance drug discovery and development. Read the full article here: https://www.sciencedaily.com/releases/2022/07/220712102650.htm
27 Apr, 2023
Scientists from the University of California, Irvine have discovered that an injury to one part of the brain changes the connections between nerve cells across the entire brain. The new research was published this week in Nature Communications. Every year in the United States, nearly two million Americans sustain a traumatic brain injury (TBI). Survivors can live with lifelong physical, cognitive and emotional disabilities. Currently, there are no treatments. One of the biggest challenges for neuroscientists has been to fully understand how a TBI alters the cross-talk between different cells and brain regions. Read full article here: https://www.sciencedaily.com/releases/2022/06/220617143432.htm
27 Apr, 2023
A new study provides for the first time the surprising evidence that four common nonexcitatory amino acids that usually make proteins which are essential to brain function, instead cause irreversible, destructive swelling of both the astrocytes that support neurons and the neurons themselves in the aftermath of stroke, TBI. Read the whole story here.
27 Apr, 2023
University of Rochester researchers have been at the forefront of efforts to understand how blows to the head impact the brain, including how concussions change brain structure . Now researchers at the Del Monte Institute for Neuroscience have found that kids who experience a traumatic brain injury (TBI), even a mild one, have more emotional and behavioral problems than kids who do not. “These hits to the head are hard to study because much of it depends on recall of an injury since the impacts do not all require a visit to a doctor,” said Daniel Lopez, a Ph.D. candidate in the Epidemiology program and first author of the study out today in NeuroImage. “But being able to analyze longitudinal data from a large cohort and ask important questions like this gives us valuable information into how a TBI, even a mild one, impacts a developing brain.” Read the whole story here.
27 Apr, 2023
While the role of the blood-brain barrier has long been appreciated for its ability to maintain precise control over what molecules can enter the nervous system, very little is known about how the cells that form the barrier influence the function of the nervous system. “What we know currently about the blood-brain barrier is mostly that we don’t know much beyond the basics,” says Buck Institute professor Pejmun Haghighi, PhD, who has uncovered a new role for these cells. Read the whole article here
27 Apr, 2023
Researchers have designed a targeted therapeutic treatment that restricts brain inflammation. The effectiveness of this approach in improving outcomes was demonstrated following brain injury, stroke or multiple sclerosis in mice. The system increases the number of regulatory T cells, mediators of the immune system’s anti-inflammatory response, in the brain. By boosting the number of T regulatory cells in the brain, the researchers were able to prevent the death of brain tissue in mice following injury and the mice performed better in cognitive tests. The treatment has a high potential for use in patients with traumatic brain injury, with few alternatives currently available to prevent harmful neuroinflammation. Read the full article here
More Posts
Share by: